Table of Content

1. WhAtiS HTIMIL? ..ottt 2
2. Basic HTML Document SErUCTUNE.........cooovviieiiiiie e 2
3. TeXt FOrmatting TagS......ccoiueiieiieeie it e e 2
A, ATEFIDULES ...t et e e ree e 2
5. LINKS @Nd IMAJGESccvviiieeieeiic sttt 3
T T PSSR 3
7. TADIES s 4
B OIS ... 4
YT 0 0= T o I To SRR 5
10. NON-SEMANTIC TGS . veeirrrerireriierieesie e ee et see e teesreesree e eeenreesree e 5

Skyline Computer https://skyline-computer.netlify.app

1. What is HTML?

. HTML stands for HyperText Markup Language

. It’s used to structure content on the web

. HTML uses tags to define elements like headings, paragraphs, links,
Images, etc.

2. Basic HTML Document Structure
html

<!DOCTYPE html>
<html>
<head>
<title>My First Page</title>
</head>
<body>
<hl>Hello, World!</hl>
<p>This is a paragraph.</p>
</body>
</html>

. <!DOCTYPE html>: Declares the document type/Version
. <html>: Root element

. <head>:Contains metadata and title

. <body>: Contains visible content

3. Text Formatting Tags

Tag Purpose Example
<h1> Heading <hi>Title</hl>
<p> Paragraph <p>Text here</p>
Bold

, <v> Bold text

,<i> Italic Italic text
Line

 Line 1
Line 2
Break

4. Attributes:

Attributes in HTML provide additional information about an
Skyline Computer https://skyline-computer.netlify.app

element, controlling its behavior, appearance, or relationship to
other elements. They’re always written inside the opening tag and
follow the format: name="value".

Skyline Computer https://skyline-computer.netlify.app

Attribute Used With Purpose

href <a> Link destination

src Image source

alt Alternative text for accessibility

type <input> Specifies input type (text, email, etc.)
value <input> Pre-filled value

placeholder <input> Hint text inside field

id Any element Unique identifier

class Any element CSS styling hook

style Any element Inline CSS

disabled <input>, <button> Makes element inactive

5. Links and Images
Html

Visit Site

. <a>: Creates a hyperlink
o Download :Download the file
o Target=" blank”:0pen link in new tab
. :Displays an image
o alt:Describes the image for accessibility
o height:give height to our image
o width:give width to our image

6. Lists:

HTML lists are essential for organizing content—whether you're
building a navigation menu, outlining features, or structuring
quiz options.

Skyline Computer https://skyline-computer.netlify.app

Unordered List: used for items where order doesn’t matter—like features, tags,
or categories.

Html

Skyline Computer https://skyline-computer.netlify.app

<1i>HTML</1i>
<1i>CSS</1i>

Ordered List: used when the order of items matters—like steps in a process or
rankings.
Html

Step 1</1li>
Step 2</1li>

[)escriptior1 List: used for key-value pairs—like definitions, FAQs, or labeled
data.
<dl>

<dt>HTML</dt>

<dd>Markup language for structuring web content</dd>

<dt>Css</dt>
<dd>Stylesheet language for designing web pages</dd>
</dl>

7. Tables:

An HTML table is a grid-like structure created using the <table>
tag. It’s made up of rows (<tr>) and columns (<td> or <th>),
allowing you to present data in a clean, readable format.

html

<table border="1">
<tr>
<th>Name</th>
<th>Age</th>
</tr>
<tr>
<td>Moeez</td>
<td>50</td>
</tr>
</table>

. <table>:Defines a table

. <tr>. Table row

. <th>: Table header

Skyline Computer https://skyline-computer.netlify.app

. <td>: Table data

8. Forms:

Skyline Computer https://skyline-computer.netlify.app

An HTML form is a structured interface that enables users to enter and submit
data through various input controls. It acts as a communication bridge
between the user and the backend system, allowing information to be
captured, validated, and processed—whether for login, search, feedback, or
data entry.

Html

<form action="submit.php" method="post">
<label for="name">Name :< /label>
<input type="text" id="name" name="name">
<input type="submit" value="Submit">
</form>

. <form>: Creates a form

. action:Where data is sent

« method: GET or POST

e <input>: Input field

. <type>: defines what data to store
. <label>:Describes input

9. Semantic Tags:

Give meaning to structure Instead of using generic <div> Or ,
semantic tags like <header>, <footer>,<article>,and <section> tell browsers
and developers what each part of the page is for.

Tag Purpose
<header> TOp section
<nav> Navigation links
<main> Main content
<section> Thematic grouping
<footer> Bottom section

10. Non-Semantic Tags:

Non-semantic tags are generic containers in HTML that don’t
convey any meaning about the content inside them. They’re used

Skyline Computer https://skyline-computer.netlify.app

purely for layout or styling purposes, not for describing the
role of the content.

Skyline Computer https://skyline-computer.netlify.app

Tag Purpose
Block-level container for
layout/styling
Inline-level container for
styling/text

<diwv>

Skyline Computer https://skyline-computer.netlify.app

1. CSS
2. Include external css file
<link rel="stylesheet" href="/style.css" />

3. Internal styles
<style>
div
{ color: #444;

}
</style>

4. Inline styles
<tag style="property: value"> </tag>

5. Selectors
& all elements
div all div tags
div p paragraphs inside divs
div > pall p tags, one level deep in div
div + p p tags immediately after div
div ~ p p tags preceded by div
.classname all elements with class
#idname element with ID
div.classname divs with certain classname
div#idname div with certain ID
#idname *all elements inside #idname

6. Pseudo classes

a:link link in normal state

a:active link in clicked state

a:hover link with mouse over it
p::after{content:"yo";} add content after p
p::before add content before p

input:checked checked inputs

input:disabled disabled inputs

input:enabl denabled inputs

input:focus input has focus
input:in-range value in range
input:out-of-range input value out of range
input:valid input with valid value
input:invalid input with invalid value
input:optional no required attribute
input:required input with requred attribute
div:empty element with no children

7. Media Queries :Viewport is 480 pixels or smaller
@media screen and (max-width: 486px) { }

8. Media Queries :Viewport width smaller OR height smaller
@media screen and (max-width: 600px), (max-height:

500px) {}

9. Font
font-family: 'Segoe UI', Tahoma, Geneva, Verdana,
sans-serif;
font-style: italic;
font-variant: small-caps;
font-weight: bold;
font-size: larger;
font: style variant weight size family;

10. Text
text-align: justify;
letter-spacing: .15em;
text-decoration: underline;
word-spacing: ©.25em;
text-transform: uppercase;

line-height: normal;

11. Background
background-image: url("Path");
background-position: right top;
background-size: cover;
background-repeat: no-repeat;
background-attachment: scroll;
background-color: yellow;

background: color image repeat attachment position;

12. Border
border-width: 5px;
border-style: solid;
border-color: aqua;
border-radius: 15px;
border: width style color;

13. Animations
CSS animations allow one to animate transitions or other media
files on the web page.
animation-name: myanimation;
animation-duration: 10s;
animation-timing-function: ease;
animation-delay: 5ms;
animation-iteration-count: 3;
animation-direction: normal;
animation-play-state: running;
animation-fill-mode: both;

14. Transitions

Transitions let you define the transition between two states of an
element.

transition-property: none;
transition-duration: 2s;
transition-timing-function: ease-in-out;
transition-delay: 20ms;

15. Flexbox
Flexbox is a layout of CSS that lets you format HTML easily.
Flexbox makes it simple to align items vertically and horizontally
using rows and columns. Items will "flex" to different sizes to fill
the space. And overall, it makes the responsive design more
manageable.
display: flex;
flex-direction: row | row-reverse | column | column-
reverse;
flex-wrap: nowrap | wrap | wrap-reverse;
flex-flow: column wrap;
justify-content: flex-start | flex-end | center |
space-between | space-around | space-evenly | start |
end | left | right ... + safe | unsafe;
align-items: stretch | flex-start | flex-end | center
| baseline | first baseline | last baseline | start |
end | self-start | self-end + ... safe | unsafe;
align-content: flex-start | flex-end | center |
space-between | space-around | space-evenly | stretch
| start | end | baseline | first baseline | last
baseline + ... safe | unsafe;

16. Child Properties (flex items)
order: 5; /* default is @ */
flex-grow: 4; /* default o */
flex-shrink: 3; /* default 1 */
flex-basis: | auto; /* default auto */

flex: none | [<'flex-grow'> <'flex-shrink'>? ||
<'flex-basis'>]

align-self: auto | flex-start | flex-end | center |
baseline | stretch;

17. Grid
Grid layout is a 2-Dimensional grid system to CSS that creates
complex responsive web design layouts more easily and
consistently across browsers.
display: grid | inline-grid;
grid-template-columns: 12px 12px 12px;
grid-template-rows: 8px auto 12px;
grid-template: none | grid-template-rows / grid-
template-columns;
column-gap: line-size;
row-gap: line-size;
justify-items: start | end | center | stretch;
align-items: start | end | center | stretch;
place-items: center;
justify-content: start | end | center | stretch |
space-around | space-between | space-evenly;
align-content: start | end | center | stretch |
space-around | space-between | space-evenly;
grid-auto-flow: row | column | row dense | column
dense;

18. Properties

font-family font of the element

font-style font style: normal, italic, oblique
font-variant set small-caps

font-weight use bold or thin characters

margin-bottom bottom margin
margin-left left margin

margin-right right margin

margin-top margin top

max-height maximum height of element
max-width maximum width of element
min-height minimum height

min-width minimum width

outline-offset gap between the element and the
outline

outline-style outline style
outline-width outline width

overflowhide display or scroll if the content
overflows its container

overflow-x horizontal overflow

overflow-y vertical overflow

paddingpadding between the element border and content
padding-bottom padding bottom

padding-left padding left

padding-right padding right

padding-top padding top

text-overflow the way how overflowed content is
marked (ellipsis)

text-shadow text shadow

visibility visibility:hidden elements leave a gap
white-space how are white-spaces handled

width width of an element

word-break text breaking rules when text reaches

the end of the container

word-spacing size of white space between words
word-wrap break long words and wrap onto the next
line

z-index stack order of the element

1. Console in js

2. Document .write in js

3. Let & Const

const section = "9th";
// section = "10th" this will through an error

document.write(section);

. Datatype
//DATA TYPES PREMETIVE AND REFRENCE DATA TYPE
//PREMETIVE
let string = "this is a string";
document.write(string, typeof (string));
let number = 33;
document.write(number, typeof (number));
let boolLean = true;
document.write("Data type is
let nullvar = null;
document.write("Data type is ", typeof (nullvar));
let undef = undefined;
document.write("Data type is " + (typeof undef));
// Reference Data Types
let myarr = [1, 2, 3, 4, false, "string"];
document.write("Data type is " + (typeof myarr));
// Object Literals
let stMarks = {

harry: 89,

Shubham: 36,

Rohan: 34

+ (typeof boolLean));

}

document.write(typeof stMarks);
//FUNCTION

function findName() {

}

document.write(typeof findName);
//DATE

let date = new Date();
document.write(typeof date);

5. Type conversion
let myVAr=10;
document.write(myVAr, (typeof myVAr));
//method one String() Number()
let myVArr = String(10);
document.write(myVArr, (typeof myVArr));
// method second toString
let myVarrr=11;
document.write(myVarrr.toString());
// method third parselnt parseFloat
let number = parselnt('10.11');//output 10
number = parseFloat('10.11');//output 10.11
document.write(number, (typeof number));
//toFixed() used to show decimal
// TYPE COERSION
let coersion = '10';
let coersion2 = 20;
document.write(coersion + coersion2);//addition
concatinate

6. Strings
//strings
let namee = "irtiza";
nickName = "meezan";

//concatinate method one
document.write(namee + nickName);
//concattinate method 2
document.write(namee.concat(" is my name"));
//functions of strings

let newName = "functions of strings";
document.write(newName);
document.write(newName.length);

document.write(newName.tolLowerCase());
document.write(newName.toUpperCase());

//index of

document.write(newName[0]);
document.write(newName.charAt(0));
document.write(newName.indexOf('s"));
document.write(newName.lastIndexOf("s"));

//check
document.write(newName.endsWith('strings'));
//returns boolean
document.write(newName.includes('strings'));
//returns boolean
document.write(newName.substring(@, 9)); //return
strings from @ to 9
document.write(newName.slice(@, 9)); //from start
document.write(newName.slice(-4)); //from end
document.write(newName.split(' '));//make an array
document.write(newName.replace('strings"’,
'replaced'));

//Template litrals

let myHtml = ° hello ${newName} template litrals °;
document.body.innerHTML = myHtml;

7. Arrays
let marks = [33, 22, 44, 66, 77, 99];
const fruits = ['orange', 'apple', 'banana’];
const mixed = [55, ‘'strings', [3, 8]];
//array constructor
const arr = new Array(23, 44, 55, 77, 'yeap buddy');
//index starts from ©
document.write(marks[2]); //output 44
//property & method
document.write(arr.length);
//check array is present

document.write(Array.isArray(arr)); //return boolean
arr[1l] = 'irtiza’';
document.write(arr);
//index of
let value = marks.indexO0f(33);
document.write(value);
//mutating or modifying arrays
marks.push(34); //push at the end
marks.unshift(99); //push at the starting
marks.pop();//delete end element
marks.shift(); //delete start element
marks.splice(1, 2);//takes two paramter start and how
many i.e delete element from 1 to two more
marks.reverse();//reverse of an array
let marks2 = [1, 2, 3, 4, 5];
marks = marks.concat(marks2);
document.write(marks);
//OBJECTS
let myObj = {

name: 'faizan', //key : values

channel: 'wreckeverthing',

isActive: true,

markas: [22, 22, 222, 11, 12]
}
document.write(myObj); //show obj
//access objects with two methods
//Method one
document.write(myObj.markas); //show name inobj
document.write(myObj['markas']); //show markas inobj
//Method two
document.write(myObj.name); //show name in obj
document.write(myObj['name']); //show name in obj

8. if Else and Or And

9. Ternary operator

10. Switch cases

11. Loops for,while,downhile,foreach,forin

