
Skyline Computer https://skyline-computer.netlify.app

Table of Content
1. What is HTML? ...2

2. Basic HTML Document Structure ..2

3. Text Formatting Tags...2

4. Attributes ..2

5. Links and Images ... 3

6. Lists ...3

7. Tables ..4

8. Forms ...4

9. Semantic Tags ...5

10. Non-Semantic Tags ...5

Skyline Computer https://skyline-computer.netlify.app

1. What is HTML?

 HTML stands for HyperText Markup Language

 It’s used to structure content on the web

 HTML uses tags to define elements like headings, paragraphs, links,

images, etc.

2. Basic HTML Document Structure

html
<!DOCTYPE html>

<html>

<head>

<title>My First Page</title>

</head>

<body>

<h1>Hello, World!</h1>

<p>This is a paragraph.</p>

</body>

</html>

 <!DOCTYPE html>: Declares the document type/Version

 <html>: Root element

 <head>: Contains metadata and title

 <body>: Contains visible content

3. Text Formatting Tags

Tag Purpose Example

<h1> Heading <h1>Title</h1>

<p> Paragraph <p>Text here</p>

, Bold
Bold

text

,<i> Italic Italic text

Line

Break

Line 1
Line 2

4. Attributes:

Attributes in HTML provide additional information about an

Skyline Computer https://skyline-computer.netlify.app

element, controlling its behavior, appearance, or relationship to
other elements. They’re always written inside the opening tag and
follow the format: name="value".

Skyline Computer https://skyline-computer.netlify.app

Attribute Used With Purpose

href <a> Link destination

src Image source

alt Alternative text for accessibility

type <input> Specifies input type (text, email, etc.)

value <input> Pre-filled value

placeholder <input> Hint text inside field

id Any element Unique identifier

class Any element CSS styling hook

style Any element Inline CSS

disabled <input>, <button> Makes element inactive

5. Links and Images

Html
Visit Site

 <a>: Creates a hyperlink

o Download :Download the file

o Target=”_blank” : open link in new tab

 : Displays an image

o alt: Describes the image for accessibility

o height: give height to our image

o width: give width to our image

6. Lists:

HTML lists are essential for organizing content—whether you're
building a navigation menu, outlining features, or structuring
quiz options.

Skyline Computer https://skyline-computer.netlify.app

Unordered List: Used for items where order doesn’t matter—like features, tags,
or categories.

Html

Skyline Computer https://skyline-computer.netlify.app

HTML

CSS

Ordered List: Used when the order of items matters—like steps in a process or
rankings.

Html

Step 1

Step 2

Description List: Used for key-value pairs—like definitions, FAQs, or labeled
data.

<dl>

<dt>HTML</dt>

<dd>Markup language for structuring web content</dd>

<dt>CSS</dt>

<dd>Stylesheet language for designing web pages</dd>

</dl>

7. Tables:

An HTML table is a grid-like structure created using the <table>
tag. It’s made up of rows (<tr>) and columns (<td> or <th>),
allowing you to present data in a clean, readable format.

html
<table border="1">

<tr>

<th>Name</th>

<th>Age</th>

</tr>

<tr>

<td>Moeez</td>

<td>50</td>

</tr>

</table>

 <table>: Defines a table

 <tr>: Table row

 <th>: Table header

Skyline Computer https://skyline-computer.netlify.app

 <td>: Table data

8. Forms:

Skyline Computer https://skyline-computer.netlify.app

An HTML form is a structured interface that enables users to enter and submit

data through various input controls. It acts as a communication bridge

between the user and the backend system, allowing information to be

captured, validated, and processed—whether for login, search, feedback, or

data entry.

Html
<form action="submit.php" method="post">

<label for="name">Name :< /label>

<input type="text" id="name" name="name">

<input type="submit" value="Submit">

</form>

 <form>: Creates a form

 action: Where data is sent

 method: GET or POST

 <input>: Input field

 <type> : defines what data to store

 <label>: Describes input

9. Semantic Tags:

Give meaning to structure Instead of using generic <div> or ,

semantic tags like <header>, <footer>, <article>, and <section> tell browsers

and developers what each part of the page is for.

Tag Purpose

<header> Top section

<nav> Navigation links

<main> Main content

<section> Thematic grouping

<footer> Bottom section

10. Non-Semantic Tags:

Non-semantic tags are generic containers in HTML that don’t
convey any meaning about the content inside them. They’re used

Skyline Computer https://skyline-computer.netlify.app

purely for layout or styling purposes, not for describing the
role of the content.

Skyline Computer https://skyline-computer.netlify.app

Tag Purpose

<div>
Block-level container for
layout/styling

Inline-level container for
styling/text

Skyline Computer https://skyline-computer.netlify.app

<link rel="stylesheet" href="/style.css" />

<tag style="property: value"> </tag>

*
div
div p
div >
div + p
div ~ p

.classname
#idname
div.classname
div#idname
#idname

all elements
all div tags
paragraphs inside divs
pall p tags, one level deep in div
p
p

tags immediately after div
tags preceded by div

all elements with class
element with ID

divs with certain classname
div with certain ID
*all elements inside #idname

1. CSS

2. Include external css file

3. Internal styles

4. Inline styles

5. Selectors

6. Pseudo classes

a:link
a:active
a:hover

link
link
link

in normal state
in clicked state

with mouse over it
p::after{content:"yo";} add content after p
p::before add content before p

<style>
div

{ color: #444;
}
</style>

Skyline Computer https://skyline-computer.netlify.app

@media screen and (max-width: 480px) { }

font-family: 'Segoe UI', Tahoma, Geneva, Verdana,
sans-serif;

font-style: italic;
font-variant: small-caps;
font-weight: bold;

font-size: larger;
font: style variant weight size family;

7. Media Queries :Viewport is 480 pixels or smaller

8. Media Queries :Viewport width smaller OR height smaller

9. Font

10. Text

input:checked
input:disabled
input:enabl
input:focus
input:in-range
input:out-of-range
input:valid
input:invalid
input:optional
input:required
div:empty

checked inputs
disabled
denabled

inputs
inputs

input has focus
value in range
input value
input with
input with

out of range
valid value
invalid value

no required attribute
input with requred attribute
element with no children

@media screen and (max-width: 600px), (max-height:
500px) {}

text-align: justify;
letter-spacing: .15em;
text-decoration: underline;
word-spacing: 0.25em;

text-transform: uppercase;

Skyline Computer https://skyline-computer.netlify.app

background-image: url("Path");
background-position: right top;
background-size: cover;
background-repeat: no-repeat;
background-attachment: scroll;
background-color: yellow;

background: color image repeat attachment position;

animation-name: myanimation;
animation-duration: 10s;
animation-timing-function: ease;
animation-delay: 5ms;

animation-iteration-count: 3;
animation-direction: normal;
animation-play-state: running;
animation-fill-mode: both;

line-height: normal;

11. Background

12. Border

13. Animations

CSS animations allow one to animate transitions or other media
files on the web page.

14. Transitions

Transitions let you define the transition between two states of an
element.

border-width: 5px;
border-style: solid;
border-color: aqua;
border-radius: 15px;
border: width style color;

Skyline Computer https://skyline-computer.netlify.app

display: flex;
flex-direction: row | row-reverse | column | column-
reverse;

flex-wrap: nowrap | wrap | wrap-reverse;
flex-flow: column wrap;
justify-content: flex-start | flex-end | center |
space-between | space-around | space-evenly | start |
end | left | right ... + safe | unsafe;
align-items: stretch | flex-start | flex-end | center
| baseline | first baseline | last baseline | start |
end | self-start | self-end + ... safe | unsafe;
align-content: flex-start | flex-end | center |
space-between | space-around | space-evenly | stretch

| start | end | baseline | first baseline | last
baseline + ... safe | unsafe;

order: 5; /* default is 0 */
flex-grow: 4; /* default 0 */
flex-shrink: 3; /* default 1 */
flex-basis: | auto; /* default auto */

15. Flexbox

Flexbox is a layout of CSS that lets you format HTML easily.

Flexbox makes it simple to align items vertically and horizontally

using rows and columns. Items will "flex" to different sizes to fill

the space. And overall, it makes the responsive design more

manageable.

16. Child Properties (flex items)

transition-property: none;
transition-duration: 2s;

transition-timing-function: ease-in-out;
transition-delay: 20ms;

Skyline Computer https://skyline-computer.netlify.app

font-family font of the element
font-style font style: normal, italic, oblique
font-variant set small-caps

font-weight use bold or thin characters
margin-bottom bottom margin

margin-left left margin

17. Grid

Grid layout is a 2-Dimensional grid system to CSS that creates

complex responsive web design layouts more easily and

consistently across browsers.

display: grid | inline-grid;
grid-template-columns: 12px 12px 12px;
grid-template-rows: 8px auto 12px;

grid-template: none | grid-template-rows / grid-
template-columns;
column-gap: line-size;
row-gap: line-size;

justify-items: start | end | center | stretch;
align-items: start | end | center | stretch;
place-items: center;

justify-content: start | end | center | stretch |
space-around | space-between | space-evenly;
align-content: start | end | center | stretch |
space-around | space-between | space-evenly;
grid-auto-flow: row | column | row dense | column
dense;

18. Properties

flex: none | [<'flex-grow'> <'flex-shrink'>? ||
<'flex-basis'>]
align-self: auto | flex-start | flex-end | center |

baseline | stretch;

Skyline Computer https://skyline-computer.netlify.app

margin-right right margin
margin-top margin top

max-height maximum height of element
max-width maximum width of element
min-height minimum height

min-width minimum width
outline-offset gap between the element and the
outline

outline-style outline style
outline-width outline width

overflowhide display or scroll if the content
overflows its container

overflow-x horizontal overflow
overflow-y vertical overflow

paddingpadding between the element border and content
padding-bottom padding bottom

padding-left padding left
padding-right padding right
padding-top padding top

text-overflow the way how overflowed content is
marked (ellipsis)

text-shadow text shadow
visibility visibility:hidden elements leave a gap
white-space how are white-spaces handled

width width of an element
word-break text breaking rules when text reaches
the end of the container

word-spacing size of white space between words
word-wrap break long words and wrap onto the next
line

z-index stack order of the element

Skyline Computer https://skyline-computer.netlify.app

document.write("hello world");
document.write(2 + 2);
document.write(["irtiza", "umaisa",
"saniya"]);//Array
document.write([22, 1, 44, 55, 66]); //Array
//OBJECTS
document.write({

name: "irtiza",
marks: 77

});
console.warn('this is for warning');
console.error("Error messages");
console.clear(); //clear console

// let & const
let age;

age = 2;
age = 33;
document.write(age);

1. Console in js

2. Document .write in js

3. Let & Const

document.write("hello world");
document.write(2 + 2);
document.write(["irtiza", "umaisa",
"saniya"]);//Array

document.write([22, 1, 44, 55, 66]); //Array
//OBJECTS
document.write({

name: "irtiza",
marks: 77

});

Skyline Computer https://skyline-computer.netlify.app

4. Datatype

//DATA TYPES PREMETIVE AND
//PREMETIVE

REFRENCE DATA TYPE

let string = "this is a string";
document.write(string, typeof (string));
let number = 33;

document.write(number, typeof (number));
let booLean = true;

document.write("Data type is " + (typeof booLean));
let nullVar = null;

document.write("Data type is ", typeof (nullVar));
let undef = undefined;
document.write("Data type is " + (typeof undef));
// Reference Data Types
let myarr = [1, 2, 3, 4, false, "string"];
document.write("Data type is " + (typeof myarr));

// Object Literals
let stMarks = {

harry: 89,
Shubham: 36,

Rohan: 34
}

document.write(typeof stMarks);
//FUNCTION
function findName() {

}
document.write(typeof findName);
//DATE
let date = new Date();
document.write(typeof date);

const section = "9th";
// section = "10th" this will through an error
document.write(section);

Skyline Computer https://skyline-computer.netlify.app

//strings
let namee = "irtiza";
nickName = "meezan";
//concatinate method one
document.write(namee + nickName);
//concattinate method 2
document.write(namee.concat(" is my name"));
//functions of strings
let newName = "functions of strings";
document.write(newName);
document.write(newName.length);

5. Type conversion

let myVAr=10;
document.write(myVAr, (typeof myVAr));
//method one String() Number()
let myVArr = String(10);

document.write(myVArr, (typeof myVArr));
// method second toString
let myVarrr=11;

document.write(myVarrr.toString());
// method third parseInt parseFloat
let number = parseInt('10.11');//output 10
number = parseFloat('10.11');//output 10.11
document.write(number, (typeof number));

//toFixed() used to show decimal

// TYPE COERSION
let coersion = '10';
let coersion2 = 20;

document.write(coersion + coersion2);//addition
concatinate

6. Strings

Skyline Computer https://skyline-computer.netlify.app

let marks = [33, 22, 44, 66, 77, 99];
const fruits = ['orange', 'apple', 'banana'];
const mixed = [55, 'strings', [3, 8]];

//array constructor
const arr = new Array(23, 44, 55, 77, 'yeap buddy');
//index starts from 0
document.write(marks[2]); //output 44
//property & method
document.write(arr.length);

//check array is present

document.write(newName.toLowerCase());
document.write(newName.toUpperCase());

//index of
document.write(newName[0]);
document.write(newName.charAt(0));
document.write(newName.indexOf('s'));

document.write(newName.lastIndexOf("s"));
//check
document.write(newName.endsWith('strings'));

//returns boolean
document.write(newName.includes('strings'));

//returns boolean
document.write(newName.substring(0, 9)); //return

strings from 0 to 9
document.write(newName.slice(0, 9)); //from start
document.write(newName.slice(-4)); //from end
document.write(newName.split(' '));//make an array
document.write(newName.replace('strings',
'replaced'));
//Template litrals
let myHtml = ` hello ${newName} template litrals `;
document.body.innerHTML = myHtml;

7. Arrays

Skyline Computer https://skyline-computer.netlify.app

document.write(Array.isArray(arr)); //return boolean
arr[1] = 'irtiza';

document.write(arr);
//index of
let value = marks.indexOf(33);
document.write(value);

//mutating or modifying arrays
marks.push(34); //push at the end
marks.unshift(99); //push at the starting
marks.pop();//delete end element
marks.shift(); //delete start element

marks.splice(1, 2);//takes two paramter start and how
many i.e delete element from 1 to two more
marks.reverse();//reverse of an array

let marks2 = [1, 2, 3, 4, 5];
marks = marks.concat(marks2);
document.write(marks);

//OBJECTS
let myObj = {

name: 'faizan', //key : values
channel: 'wreckeverthing',
isActive: true,

markas: [22, 22, 222, 11, 12]
}

document.write(myObj); //show obj
//access objects with two methods
//Method one
document.write(myObj.markas); //show name inobj
document.write(myObj['markas']); //show markas inobj

//Method two
document.write(myObj.name); //show name in obj
document.write(myObj['name']); //show name in obj

8. if Else and Or And

Skyline Computer https://skyline-computer.netlify.app

const age = 23;
if (age == 13) { //simple condition check

document.write("Age is 23");

}
else if (age == 22) { //nested if else

document.write("Age is 22");

}
else if (age === 23) { //condition and datatype check

document.write("Age is 23");

}
else if (age != 23) { //not equal to

document.write("Age if not 23");

}
else if (age !== 23) { //not equal to and check
datatype

document.write("Age if not 23");
}
else {

document.write("Age is not 23 or 22");
}

//boolean
const driver = true;
if (driver) {

document.write("driver is present");

}
else {

document.write("driver is absent");

}
//AND && OR ||
if (driver && age) {//AND = both condition should be
true

document.write("driver and age is defined");
}

Skyline Computer https://skyline-computer.netlify.app

const irtiza = 22;
document.write(irtiza == 22 ? 'irtiza is 22' :

'irtiza is not 22');

let a = 1;
while (a < 10) { //while loop

document.write(a);
a++;

}
for (a = 10; a < 20; a++) { //for loop

9. Ternary operator

10. Switch cases

switch (irtiza) {

case 20:

document.write("irtiza is 20");
break;

case 21:

document.write("irtiza is 21");
break;

case 22:

document.write("irtiza is 22");
break;

default:

document.write("age is unknown");
break;

11. Loops for,while,dowhile,foreach,forin

if (driver || khaberkos) { //OR = atleast one
condition should be true

document.write("one is defined");

}
}

Skyline Computer https://skyline-computer.netlify.app

document.write(a);
}
do { //do-while loop

document.write(a)
a++;

} while (a < 10);
//foreach

let arr = [1, 2, 3, 4, 5];
arr.forEach(function (element) //element,index,array
can also be used

{
document.write(element);

});
//break; to break a loop
//continue to skip a loop
let obj = {

name: 'irtiza',
age: 11,

os: 'kali-linux',
pro: 'professional'

}

